Shang-Hung Lin 1 2 3, Chung-Yuan Hsu 2 3 4, Sung-Chou Li 5 6 7
Tag : apoptosis
Section scientifique
Increased Circulating CD14+ Monocytes in Patients with Psoriatic Arthritis Presenting Impaired Apoptosis Activity
Biomedicines. 2024 Apr 1;12(4):775. doi: 10.3390/biomedicines12040775.
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis primarily affecting peripheral and axial joints. The osteolytic effect in the damaged joint is mediated by osteoclast activation. We aimed to investigate differential gene expression in peripheral CD14+ monocytes between patients with psoriatic arthritis (n = 15) and healthy controls (HCs; n = 15). Circulating CD14+ monocytes were isolated from peripheral blood mononuclear cells using CD14+ magnetic beads. Cell apoptosis was measured via Annexin V using flow cytometry. The gene expression profiling was analyzed via microarray (available in the NCBI GEO database; accession number GSE261765), and the candidate genes were validated using PCR. The results showed a higher number of peripheral CD14+ monocytes in patients with PsA than in the HCs. By analyzing the microarray data, identifying the differentially expressed genes, and conducting pathway enrichment analysis, we found that the apoptosis signaling pathway in CD14+ cells was significantly impaired in patients with PsA compared to the HCs. Among the candidate genes in the apoptotic signaling pathway, the relative expression level of cathepsin L was confirmed to be significantly lower in the PsAs than in the HCs. We concluded that the numbers of peripheral CD14+ monocytes increased, and their apoptosis activity was impaired in patients with PsA, which could lead to enhanced macrophage maturation and osteoclast activation. The resistance of apoptotic death in peripheral CD14+ monocytes may contribute to active joint inflammation in PsA.
Section scientifique
Therapeutic Granulomonocytapheresis as a Non-pharmacologic Treatment Option for Inflammatory Bowel Disease: Efficacy Reports on a Wide Age Range and Disease Profile
The major phenotypes of inflammatory bowel disease (IBD) include ulcerative colitis (UC) and Crohn’s disease (CD), which cause debilitating symptoms, including bloody diarrhea, abdominal discomfort, and fever. Patients require life-long immunosuppressive medications, which cause adverse side effects as additional morbidity factors. However, IBD is initiated and perpetuated by inflammatory cytokines, and given that in patients with IBD myeloid lineage leukocytes are elevated with activation behavior and release inflammatory cytokines, selective depletion of elevated granulocytes and monocytes by granulomonocytapheresis is a relevant therapeutic option for IBD patients. Therefore, a column filled with specially designed beads as granulomonocytapheresis carriers for selective adsorption of myeloid lineage leukocytes (Adacolumn) has been applied to treat patients with active IBD. Patients receive up to 10 granulomonocytapheresis sessions at one or two sessions per week. During each session, the carriers adsorb up to 60% of the myeloid leukocytes from the blood that passes through the granulomonocytapheresis column. Efficacy rates in the UC setting have been as high as 85% in steroid-naïve patients, and 100% in drug-naïve, first-episode cases, but patients with a long duration of active IBD and extensive colonic lesions that have become refractory to pharmacological treatment have not responded well. However, granulomonocytapheresis has a favorable safety profile. Given that immunosuppressive medications used to treat IBD potentially may increase the risk of severe viral infection, non-drug granulomonocytapheresis should be a favorable treatment strategy. Further, by targeting granulomonocytapheresis to patients with background features and identifying a patient as a likely responder, futile use of medical resources is avoided.
Section scientifique
Granulocyte and monocyte adsorptive apheresis induces apoptosis of neutrophils and release of a novel chemoattractant for desensitization of interleukin-8 response
Nobuhito Kashiwagi , Fumio Saito , Hidetaka Maegawa , Kenta Kaneda, Cytokine 2021 Mar;139:155410.
Objective: Apoptotic cells participate in maintenance of homeostasis of the adaptive immune system. Granulocyte/monocyte adsorptive apheresis (GMA) performed with an Adacolumn has been shown to have clinical efficacy together with immunomodulatory effects for immune-mediated disorder cases, such as inflammatory bowel disease (IBD) or psoriatic arthritis. Although induction of apoptosis in neutrophils by GMA has been observed, the detailed mechanism remains unclear. Methods: To focus on phagocytosis-induced cell death (PICD) that induces apoptotic neutrophils, a comparative study utilizing a GMA-carrier (leukocyte adsorbing carrier for Adacolumn) and yeast particles was performed with in vitro and in vivo examinations. Results: L-selectin was significantly (P = 0.0133) shed, reactive oxygen species (ROS) production was promoted (P = 0.0019), and apoptosis induction was enhanced (P = 0.0087) by peripheral blood co-cultured with the GMA-carrier or yeast particles as compared to incubated blood alone. Furthermore, degranulation of myeloperoxidase, elastase, and lactoferrin was increased by both treatments, while the highest level of interleukin-1 receptor antagonist release was found with GMA-carrier treatment (P = 0.0087) as compared to the yeast particles. Plasma from blood treated with the GMA-carrier showed chemotactic activity, and suppressed neutrophil migration to IL-8 and LTB4. In vivo results demonstrated that neutrophil chemotaxis to IL-8 was desensitized (P = 0.0078) in rabbits following GMA apheresis, while CXCR1 and CXCR2 expressions in neutrophils were reduced by exposing peripheral blood to the GMA-carrier. Conclusions: GMA may regulate the immune system in patients with an immune-mediated disorder by inducing a biological response of neutrophils with a PICD-like reaction.
Section scientifique
Selective granulocyte and monocyte apheresis as a non-pharmacological option for patients with inflammatory bowel disease.
Gerda C Leitner 1, Nina Worel, Harald Vogelsang, Transfus Med Hemother. 2012 Aug;39(4):246-252.
Ulcerative colitis and Crohn’s disease are the two most prevalent inflammatory bowel diseases. In both cases, the medically refractory and steroid-dependent type presents a therapeutic challenge. To help resolve this problem, a mainly Japanese team developed a new therapeutic option. There are two systems, both of which are able to selectively remove the main mediators of the disease, namely the activated pro-inflammatory cytokine-producing granulocytes and monocytes/macrophages, from the patient’s blood circulation (GMA = granulocyte monocyte apheresis). One of the two systems is the Adacolumn( (®) ) (Immunoresearch Laboratories, Takasaki, Japan) consisting of the ADA-monitor and a single-use column, which contains approximately 35,000 cellulose acetate beads. The exact mode of action is not yet sufficiently understood, but however, a modulation of the immune system takes place. As a result, less pro-inflammatory cytokines are released. Furthermore, the production of anti-inflammatory interleukin-1 receptor antagonist is increased, and the apoptosis of granulocytes boosted. The decreased LECAM-1-expression on leukocytes impedes the leukotaxis to the inflamed tissue, and CD10-negative immature granulocytes appear in the peripheral blood. Another effect to be mentioned is the removal of the peripheral dendritic cells and the leachate of regulatory T cells (T-regs). The second system is the Cellsorba( (®) ) FX Filter (Asahi Medical, Tokyo, Japan). The range of efficiency, the indication, and the procedure are very similar to the Adacolumn. Solely the additional removal of lymphocytes can possibly limit the implementation since lymphopenia can increase the risk of autoimmune disease. Both systems provide a low-risk therapy with few adverse reactions. ASFA recommendations for GMA in inflammatory bowel disease are 2B due to the fact that not enough randomized double-blind studies are available to proof the efficacy of this treatment.
Contactez-nousPour en savoir plus
Contactez-nous