Scientific corner

Sa1316 Granulocyte and Monocyte Adsorptive Apheresis (GMA) Might Be Useful for Patients With Ulcerative Colitis by Inhibition of S100A12-S100a12 Correlates With Acute and Chronic Inflammation by Induction of CCL and CXCL Chemokines

Shingo Kato, Kazuhito Kani, Hidehiko Takabayashi, Ryuichi Yamamoto, Koji Yakabi Gastroenterology 2011 140(5) Suppl. S-279–S-280

Backgrounds&Aims; Granulocyte and monocyte adsorptive apheresis (GMA) adsorbs mainly granulocyte and monocytes, as well as Leukocyteapheresis (LMA) filters many cells such as granulocyte, monocytes, lymphocytes and platelets. However, there was no significant difference in clinical effectiveness between GMA and LMA (Eur J Gastroenterol Hepatol 2008;20:629). We hypothesized effectiveness of GMA and LMA might be dependent on depletion of granulocyte and monocytes. S100A12 was reported to be exclusively expressed in neutrophils and up-regulated by TNF α. The aim of this study was to investigate the changes of serum S100 A12 concentration in the GMA treatments and whether S100A12 increases the expression of adhesion molecules, CXCL and CCL chemokines. Methods; 24 patients with ulcerative colitis were treated with GMA. Serum S100A12 was estimated by ELISAmethods.Clinicalactivityindex(CAI)andserumCRPconcentrationwerealsochecked. Immunohistochemical staining of S100A12 and receptor for advanced glication end products (RAGE) were performed in the operated specimens of patients with ulcerative colitis and with colonic carcinoma (control). HUVEC were seeded into 12 well plates and confluent plates were used to experiments. Each experiment was performed in triplicate. HUVEC were treated with human recombinant S100A12 protein. RNA was extracted by RNeasy Mini Kit. 1.5μg RNA was reverse-transcriptated into cDNA. ICAM-1, VCAM-1, IL-8, CCL-2 (MCP1), CCL5 (RANTES), CXCL9 (IP-10) and CXCL10 (Mig) mRNA was quantitated by realtime PCR. Results; S100A12 staining was faintly recognized in the mucosal layer of normal control. S100A12 staining was increased in infiltrating cells in inflamed colon in patients with ulcerative colitis. Strong staining was also recognized in crypt abscess. RAGE staining was also faintly recognized in the epithelial cells in nornmal control. However, RAGE staining was increased in the inflamed epithelial cells. Significantly serum S100A12 concentration was positively correlated with CAI (n=34, p=0.02, rs=0.404). 16 patients were able to estimate S100A12 concentration in the points of pre-and post-GMA treatment. 13 patients wereGMA-respondersand3patientswere nonGMA-responders.SerumS100A12concentration was significantly decreased in GMA responders (pre-vs post-GMA, 1.34±1.08 vs 0.60±0.50, p<0.05). However, Serum S100A12 concentration of non GMA-responders was gradually increased with GMA treatments. ICAM-1, VCAM-1, IL-8, IP-10, Mig, MCP-1 and RANTES mRNA expressions were increased by S100A12 in HUVEC cell lines in time and dose-dependent manners. Conclusion; one of the mechanisms of GMA effect might be correlated with depletion of S100A12 by adsorption of activated neutrophils. S100A12 might aggravate acute and chronic inflammation by up-regulation of adhesion molecules, CXCL and CCL chemokines.

Scientific corner

Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease

Yuji Naito 1Tomohisa TakagiToshikazu Yoshikawa

J Gastroenterol  2007 Oct;42(10):787-98. doi: 10.1007/s00535-007-2096-y. Epub 2007 Oct 15.

Neutrophil accumulation within epithelial crypts and in the intestinal mucosa directly correlates with clinical disease activity and epithelial injury in inflammatory bowel disease (IBD). Current advances have defined the mechanisms by which neutrophils are activated or migrate across endothelial and mucosal epithelial cells. A better understanding of this process will likely provide new insights into novel treatment strategies for IBD. Especially, activated neutrophils produce reactive oxygen and nitrogen species and myeloperoxidase within intestinal mucosa, which induce oxidative stress. Posttranslational modification of proteins generated by these reactive species serves as a “molecular fingerprint” of protein modification by lipid peroxidation-, nitric oxide-, and myeloperoxidase-derived oxidants. Measurement of these modified proteins may serve both as a quantitative index of oxidative stress and an important new biological marker of clinical relevance to IBD. We have succeeded in the clinical development of a novel granulocyte adsorptive apheresis therapy for IBD. In this review, we discuss current advances in defining the role of neutrophil-dependent oxidative stress in IBD.

Contact UsFor more information

Contact Us