Scientific corner

Granulocyte and Monocyte Adsorption Apheresis for Refractory Skin Diseases due to Activated Neutrophils, Psoriasis, and Associated Arthropathy.

Masanao Sakanoue 1Koichiro TakedaKazuhiro KawaiTakuro Kanekura, Ther Apher Dial. 2013 Oct;17(5):477-83.

Granulocyte and monocyte adsorption apheresis (GMA), an extracorporeal apheresis instrument whose column contains cellulose acetate (CA) beads, is designed to remove activated granulocytes and monocytes. We previously demonstrated that GMA was useful for treating neutrophilic dermatoses and associated arthropathy as it adsorbs Mac-1 (CD11b/CD18)-expressing neutrophils to the CA beads by the binding of complement component (iC3b) and CD11b expressed on activated neutrophils. The objective of this study is to further assess the clinical effectiveness of GMA in the treatment of neutrophilic dermatoses and associated arthropathy. The effect of GMA for skin lesions and joint lesions was assessed in 44 and 23 patients, respectively. Mac-1 expression on peripheral neutrophils was measured by flow cytometry. Skin lesions and arthropathy improved in 39 of 44 patients (88.6%) and 22 of 23 (95.6%), respectively. Mac-1 (CD11b/CD18) expression on the peripheral neutrophils, 27.1 ± 6.66 MFI (mean fluorescence intensity) before treatment, was reduced to 17.9 ± 3.02 MFI by GMA (P < 0.05). Clinical effectiveness of GMA for the treatment of intractable neutrophilic dermatoses and associated arthropathy was further confirmed.

https://pubmed.ncbi.nlm.nih.gov/24107275/

Scientific corner

Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease

Yuji Naito 1Tomohisa TakagiToshikazu Yoshikawa

J Gastroenterol  2007 Oct;42(10):787-98. doi: 10.1007/s00535-007-2096-y. Epub 2007 Oct 15.

Neutrophil accumulation within epithelial crypts and in the intestinal mucosa directly correlates with clinical disease activity and epithelial injury in inflammatory bowel disease (IBD). Current advances have defined the mechanisms by which neutrophils are activated or migrate across endothelial and mucosal epithelial cells. A better understanding of this process will likely provide new insights into novel treatment strategies for IBD. Especially, activated neutrophils produce reactive oxygen and nitrogen species and myeloperoxidase within intestinal mucosa, which induce oxidative stress. Posttranslational modification of proteins generated by these reactive species serves as a “molecular fingerprint” of protein modification by lipid peroxidation-, nitric oxide-, and myeloperoxidase-derived oxidants. Measurement of these modified proteins may serve both as a quantitative index of oxidative stress and an important new biological marker of clinical relevance to IBD. We have succeeded in the clinical development of a novel granulocyte adsorptive apheresis therapy for IBD. In this review, we discuss current advances in defining the role of neutrophil-dependent oxidative stress in IBD.

https://pubmed.ncbi.nlm.nih.gov/17940831/

Contact UsFor more information

Contact Us